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Introduction and Summary 

This memorandum presents a one-dimensional search routine combining 

two different techniques. 

The one-dimensional search determines the minimum of a continuous 

function of one variable. The two techniques are termed the "Golden Section" 

and the "Cubic Fit" methods. They may be used either independently or in com- 

bination depending on the input option chosen. For functions which are very 

smooth and which thus can be well approximated by a polynomial function, the 

cubic f i t  method would probably find the minima fastest. The golden section 

method alone is appropriate for functions having only piecewise continuous first 

or second derivatives and which cannot be well approximated by a low degree 

polynomial. 

Assuming F( k)  to be the function, it is necessary for the use of the 

routine only that the following be available: 

a. A point ko, designated as the origin, such that the slope 

of F at k, is negative 

b. Some method for evaluating F at any k 5 ko 

c. Existence of at least one minimum of F for some k>ko 

The more assumptions that can be made about the function, the more the 

program can be tailored by the user to minimize execution time. 
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Golden Section Method 

Briefly, the golden section method is an iteration scheme to nest a se- 

quence of intervals around the function's minimum. Each iteration reduces the 

size of the interval until it is small enough to justify taking its midpoint as the 

approximation to the abscissa of the function's minimum. 

The technique is derived from the Ifoptimal One-Dimensional Maximiza- 

tion Theorem" (Ref. 1). Each iteration assumes the function to be unimodal* 

over the initial interval [A, D] . This interval becomes a "golden section" with 

the insertion of two intermediate points, B and C, defined as follows: 

3 - 4 5  
( D - A )  + A .382 

2 
B =  

( D - A )  + A .618 
f i - 1  

2 c =  

D - A \ + A  

D - A \  +A 

The new interval [A', D' 1 for the next iteration is determined by com- 

paring the functional values at k = B and k = C . 

To initiate the golden section process, A is chosen as the origin and 

D is the first point at which the function increases. It is terminated when 

( C - B )  is smaller than some arbitrarily specified epsilon (usually 10 
-3 times 

B). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* A continuous function f (x) is defined as unimodal over an interval [ A ,  D 1 if 

there exists a point xo E [ A ,  Dl such that f (  x )  is strictly decreasing on [A ,  xo) 
and strictly increasing on ( xo , D 1. 
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Cubic Fit Method 

The cubic fit method is a scheme to approximate the function with a cubic 

equation. The minimum of the cubic may then provide a good approximation to 

the function minimum. 

To initiate the cubic fit,a minimum of four and a maximum of ten points 

and corresponding function values must be known. 

If (x . ,  y.) represent a pair of these points, then one of the following two 
1 1  

techniques are used to determine the coefficients of the cubic equation 

2 3 y(x) = a O + a l x + a  x + a  x 
2 3 

a. The method of least squares is used when 5 i 5 10. 

This means solving the system: 

i i i 

0 a 

1 a 

2 
a 

3 a 
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b. When i =4, the method of least squares reduces to a 

perfect fi t .  

- 

0 

1 

2 

a 

a 

a 

a 3 ,  

Once y( x) is completely determined, its minimum is computed as 

follows: 

-a +,/(a2) 2 -3ala3 
2 

3 a. a3$0, ymk= 3a 

- a, l. - - 

'min a2 +/-3 
b. If a 3 x 0  but a 2 > 0 ,  

Otherwise, no cubic minimum can be determined. 
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Development of the Logic 

The program can be logically divided into three parts. Each part is out- 

lined by a brief summary and a detailed flow chart. The FORTRAN IV listing 

found in Appendix B is subdivided into the same three sections. 

The purpose of Part 1 is to establish some golden section [A  , D 1 con- 

taining the first minimum of the function. Initially this is done by choosing A 

equal to the origin and D as the first point at which the function shows an in- 

crease. B and C are computed in  the golden mean ratio. In order that the 

function be unimodal, F (  B) must be less than F ( A )  and F( C )  less than F (  D )  . 
Part 1 is executed only once during the program unless within some smaller 

interval nested in [A, D 1 the unimodality assumption is later proven false. 

The primary purpose of Part 2 is to reduce the size of the interval con- 

taining the minimum. This is done by comparing the function values of the inter- 

mediate points B and C. If the function has increased from B to C , the 

minimum must be in [A , C 1 . If it has decreased, the minimum must be in 

[B , D 3 . If it has not changed, the iiliiiimtm is in [ B , C 1 I" The new interval 

is divided into the golden mean ratio yielding a new golden section interval. If 

this interval passes the unimodality test, control is passed to Par t  3; otherwise 

the program returns to Part 1. 

As an option, points and their functional values may be accumulated one- 

by-one up to a maximum of MPTS?* 

cubic f i t .  

These points are used in Part 3 for the 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
** The value of MPTS is specified by the user. 

The assumption of unimodality is essential for the validity of this logic. 
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In Part 3 the minimum of the function is sought by one of three methods 

determined by the input parameter KUBIC. All the methods use, as a starter, 

the golden section found in Part 1, which is known to contain the minimum of 

the function. 

& 

The first method (KUBIC = 0) is the golden section method. When the 

interval [B , C 1 is sufficiently small, that is, less than EPSGS; the final 

minimum, CAYMIN, becomes the midpoint between B and C.  Until this 

criterion is met, control is returned to Par t  2.  

The second method ( KUBIC = 1 ) abandons the golden section technique 

and relies entirely on a perfect cubic f i t  (MPTS =4)  with the previous minimum 

used as one of the points. 

The third method (KUBIC =2)  combines the golden section and cubic f i t  

techniques. The cubic equation is determined using points from the golden sec- 

tion and may be either a perfect f i t  (MPTS =4) or  a least squares fit 

( 5  SMPTS < l o ) .  

The second method fits a cubic equation and finds its minimum. Which- 

ever point has the greatest function value is replaced by the minimum of the 

cubic and another cubic is computed and minimized. This process continues 

until a minimum is found which is within a pre-specified distance from the point 

with the smallest function value. This minimum then becomes CAYMIN. Any 

of the following conditions will cause this method to fail: 

a. The nature of the cubic makes its minimum impossible 

to determine. 

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - -  
* This parameter is prescribed as a constant value, but in a comparison it is 

used relative to the magnitude of the variables with which it is compared. 
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b. The minimum of the cubic is not in the interval con- 

taining the function minimum. 

c. The function value of the cubic minimum is greater 

than that of any one of the four points used to deter- 

mine the cubic equation. 

Should any of these occur, the program reverts to Method 3 to insure that the 

final minimum can still be determined. 

The golden section criterion for Method 1 is utilized also in Method 3. 

However, if it is not met, a cubic equation is f i t  and its minimum found and 

stored. The final minimum, CAYMIN, is the midpoint between two successive 

minima found by the cubic f i t  technique, provided their distance apart is not 

greater than the parameter EPSCF? Until this criterion is met, control is re- 

turned to Part 2 (the golden section technique). This guarantees that if the 

cubic f i t  cannot find the minimum, eventually it will be located by the golden 

section technique. 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - - - - - - - - - - - _ - - - - - - - - _  
* This parameter is prescribed as a constant value, but in a comparison it is 

used relative to the magnitude of the variables with which it is compared. 
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PART I 
I 

SET: 

B = D  
F ( B )  = F ( D )  

51 
COMPUTE: 

D = CCAY 
DHAT = F (  D)  

COMPUTE: 

> D = B / G 1  
DHAT = F ( D )  

I I __ 
COMPUTE: 'SET: 

: B =G1*D D = B  
BHAT = F (  B) F ( D )  = F ( B )  

j d  

! I  

NO 

'ES 

SET: 
D = C  
DHAT = CHAT 
C = B  
CHAT =BHAT 

NO 

YES 
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PART 2 
I 

I 

I 

INCREMENT MOVE: 
NPTS by 1 (up _- X( 1-1) to X( I )  
to  a maximum 
of MPTS) 

Y( 1-1) to Y( I )  
for 6 s 15 NPTS 

I 

(INCREMENT 1  MOVE: I 
NPTS by 1 (up _- X( 1-1) to X( I )  
to  a maximum 
of MPTS) 

Y( 1-1) to Y( I )  
for 6 s 15 NPTS 

Y(5) =F(A) Y(5) =F(A) 

7- I 
SET: 

A = B  
F(A) =F(B) 

B = C  
F(B) =F(C) 

+ 
;ET: 

A = B  
F(A) =F(B) 

D =C 
F(D) =F(C) 

I 
I + COMPUTE: 

C =G2 (D-A) +A 

B=G1(D-A)+A 

CHAT =F(C) 
BHAT =F(B) 

X(5) =D 
Y(5) =F(D) 

SET: 

D = C  
F(D) = F(C) 

C = B  
F(C) =F(B) 

I 
J. 

B =G1(D-A)+A 

BHAT =F(B) 
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PART 3 r A I COMPUTE: 

KUBIC = 0 0- 
lms 

B + C  
1 yLl CAYMIN =- 2 

COMPUTE: 

XMIN2 via the 
cubic f i t  tech- 
nique 

I G 

i 
END OF ( 1-DSEARCH 

SET: 

XMINl=XMINB : 

- 
i i  

NO 

!, 

COMPUTE: 

- \ 
K CAYMIN = 

XMINl+XMINB 
2 

10 



PART 3 (cont.) 

n IARRANGE the 

t- Y( I )  in ascending 
order fo r  

/-\ ISET: 

KUBIC = 2 '  
XMINl =XMIN2 

PART 2 

I = n  

FXMNB = F(XMIN2) 

COMPUTE: 

J such that 
FXMN2 Y( J ) 

Y( 1-1) to Y( I )  
X( 1-1) to X( I )  
for J+l S I s  4 

ISET: 1 
Y ( J )  =FXMN2 
X ( J )  =XMIN2 

COMPUTE 
XMIN2 via the 
cubic f i t  tech- 
nique 

COMPUTE : 

CAYMIN = 
END OF 
1-D SEARCH 
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CUBIC FIT ROUTINE 

COMPUTE: 

MATRIX A 
VECTOR C 

CALL MATIN 

To invert A and 
find coefficients 

-7 r ,  ItETLrnN 

A 
NO 

y NO 
COMPUTE: COMPUTE: 

XMIN2 = xMIN2 = 
1/2 - A1 

-A2 + L(A2f- 3 A1 A33 1/2 
3 A3 A2 +[(A2?-3AlA3] 
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APPENDIX A 

Theorems and Formulas Related to 

The Golden Section Method 

The basis for choosing the Golden Section Method is the "Optimal One- 

Dimensional Maximization Theorem" (Ref. 1). In essence this theorem states 

that if F 

locate the minimum of a unimodal function by calculating the function at most 

n times, then F is a Fibonacci number. That is 

represents the interval of maximum length on which it is possible to n 

n 

F = F  n n- l+  Fn-2 
n 2 2  

where F = F = an arbitrary unit interval. 
0 1  

It is easily shown that, except for the boundary conditions, (1) is satisfied 

by choosing 

For simplicity define: 

M .6180339887498949 J5 - 1 
2 G2 = 

and 

- " Z .3819660112501051 G 1 = 1 - G 2 =  2 
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Applied to the golden section iteration notation, F is the interval [A D]. 
n 

Then the points B and C should be chosen in such a way that 

= [ A , C ]  = [ B , D ]  %-1 

since these would normally represent the %estff interval on the next iteration. 

But (2) implies that 

G 2 ( D - A )  = ( C - A )  = ( D - B )  

or finally that B and C are determined by 

B = G1(D-A)  + A  

C = G2(D-A)  + A  

The terminology "golden section" comes from the Greek "golden mean" 

times f i + l  
2 which divided an interval into two segments, one of which was 

the other. This is equivalent to the segiileiits being in the mtio G :G 2-  - 1' 

With the golden section points A ,  B C , D and the numbers G1 and 

G 

program: 

defined as above, the following equivalency relationships are used in the 2 

Let A', B', c ' ,  D' represent the points in the next golden section. 

Theorem 1. 

Theorem2. 

Theorem3. 

If [A',D'] = [ A , C ]  then B'= A + C - B  and C ' = B  

If [A',D'I = [ B , D ]  then B ' = C  and C ' = B + D - C  

If [&,I)'] = [ B , C ]  then C ' = 3 B - C - A  and B ' = C + B - C '  
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Before the theorems can be proven, the following lemmas are  necessary: 

2 Lemmal .  (G2) = G1 

Proof follows immediately from the definitions 

of G1 and G2. 

G1*G2 = G - G  2 1  Lemma 2. 

Proof: G + G2 = 1 (by definition) 

G1*G2+(G2) = G2 

1 
2 

G1 * G2 + G1 = G2 (by Lemma 1) 

G1*G 2 = G2 - G1 

2 
Lemma3. (G1) = 2G1-G2 

Proof: G + G  = 1 1 2  
2 

2 
(G1) +G1*G2 = G1 

(G1) = G1-G2+G1 (byLemma2)  

Proof of Theorems 1 - 3 

Theorem 1. 

Given: B' = G1(D' - A') + A' (by definition of B') 

= G1(C-A) + A  

= G1[G2(D -A)] + A (by definition of C )  

= (G1*G2)(D-A) + A  

= (G2 - G1)(D -A)  + A (by Lemma 2 )  

= G2(D-A)  - G1(D-A) + 2A - A  

= [G2(D-A) + A ] -  [G1(D-A) + A ] + A  

Conclusion: B' = C - B + A (by definition of C and B) 
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Theorem 2. 

c' = G (D'-A')  +A' 
2 

Given: 

= G2(D - B )  + B  

= G2(C - A )  + B  

= G2[G2(D - A )  1 + B (by definition of C )  

2 
= (G2) ( D  - A )  + B 

= G1(D - A )  + B 

= G1(D - A )  + G1(D - A )  + A  

(by Lemma 1) 

(by definition of B) 

= 2 [ G 1 ( D - A ) + A ] - A  

= 2 B - A  

= B + ( B - A )  

Conclusion: C' = B + (D - C) 

Given: D ' - c ' =  B'-A' 

D - C' = B'-  B 

D - ( B + D - C )  + B  = B' 

Conclusion: C = B' 
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Theorem 3. 

Given: c' = G ~ ( D ' -  A') +A' 

G2(C - B) + B 

= G 2 L G 2 ( D - A )  - G 1 ( D - A ) I + B  (bydef in i t ionof  B and C )  

= G2[G2*G1(D - A)] + (B - A )  + A  

2 
= (G2) *G1(D - A )  + G1(D - A )  + A  ( b y  definition of B) 

2 
= ( G 1 ) ( D - A ) + G 1 ( D - A ) + A  ( b y L e m m a 1 )  

= 3G1(D - A )  - G2(D - A )  + 3 A  - 2 A  (by  Lemma 3)  

= [3G1(D - A )  + 3 A I  - [G2(D - A )  + A ]  - A 

Conclusion: C' = 3 B - C - A 
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APPENDIX B 

Dictionary of FORTRAN Terms 

Term Meaning 

MPTS The maximum number of points desired for the cubic f i t .  
4sMPTS510 

NTAPE Output tape drive 

EX1 

CAYMIN 

KUBIC 

EPSGS 

EPSCF 

ITC 

ITT 

CCAY 

Initial value of the abscissa. It is designated as the 
origin, 

Value of the abscissa which yields the final minimum of 
the function. 

Input parameter indicating which method will be used to 
find the function minimum. 

Parameter defining how small the interval [B , C 1 must 
be before accepting its midpoint as CAYMIN. 

Parameter used to determine when a cubic minimum is 
scceytable for computing CAYMIN. 

Number of times the function has been evaluated during 
the search. 

Cumulative sum of the ITC'S if the search is executed 
more than once during a program. 

Estimate for the abscissa value to initiate the search for 
the first golden section containing the minimum. 

X M I N l ,  XMIN2 Successive minima obtained by the cubic f i t  technique. 

FXMNl, FXMN2 Functional values of XMINl and XMIN2. 
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Term 

CAY(1) 
I = 1 , 4  

FHAT( I )  

CALCl CALCB 

JSW 

F 

Y( 1) 
I = 1 , NPTS 

A 

C 

KEY 

7 A2 9 A3 

MATIN 

KSW 

Meaning 

th I point in the current golden section, i. e ,  
CAY(1) = A CAY(3) = C 
CAY(2) = B CAY(4) = D 

Functional value of CAY( I ) .  

Double precision storage locations for  intermediate 
calculations. 

Value of the abscissa at which the function is to be 
evaluated. 

Control switch to return to the proper program location 
after evaluating the function. 

Value of the function at EX( 1 )  

Points used to f i t  a cubic equation. 

Functional value of X( I ) .  

The matrix which must be inverted in order to find the 
coefficients of the cubic equation. 

1) Before inverting matrix A , C is the vector of 
constant terms of the system of equations yielding 
a cubic fit. 

2) After the inversion of A ,  C contains the solution 
to this system, i. e . ,  the coefficients of the cubic 
f i t .  

Rank of matrix A 

Coefficients of the cubic f i t  

3 2 1 0 
3 2 A x + A  x + A  x + A  = y 

Subroutine used to invert matrix A and solve for uecicir C. 

Control switch to return to the proper program location 
after finding the cubic minimum. 
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